Intramyocellular Lipids, Insulin Resistance, and Functional Performance in Patients with Severe Obstructive Sleep Apnea.

Nature and science of sleep. 2020;12:69-78
Full text from:

Plain language summary

Obstructive sleep apnoea syndrome (OSA) is characterized by repeated occlusion of the upper airway during sleep, resulting in periods of intermittent hypoxemia [low level of oxygen in blood]. The aim of this study was to (a) investigate the intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL), biochemical data, and functional performance in patients with severe OSA versus controls, and (b) examine the correlations between intra-muscular lipid contents and biochemical and performance variables. This study is a clinical trial that recruited 20 patients with OSA and body mass index(BMI)-matched controls. Results demonstrate that patients with OSA had significantly lower IMCL and EMCL values when compared with their age-, and BMI-matched controls without OSA. Furthermore, compared with controls, patients with OSA had significantly reduced functional performance and exhibited abnormal biochemical data, including glucose and insulin levels and lipid profiles. Authors conclude that additional large-scale clinical trials are required to further explore the complex mechanism between OSA, muscle metabolism, and insulin action.

Abstract

PURPOSE An increasing number of studies have linked the severity of obstructive sleep apnea (OSA) with metabolic dysfunction. However, little is known about the lipid compartments (intramyocellular [IMCL] and extramyocellular [EMCL] lipids) inside the musculature in these patients. The present study was designed to investigate the IMCL and EMCL, biochemical data, and functional performance in patients with severe OSA, and to examine the correlations between intramuscular lipid contents and test variables. PARTICIPANTS AND METHODS Twenty patients with severe OSA (apnea-hypopnea index [AHI]: ≥30/h; body mass index [BMI]: 26.05±2.92) and 20 age- and BMI-matched controls (AHI <5/h) were enrolled. Proton magnetic resonance spectroscopy was used to measure the IMCL and EMCL of the right vastus lateralis muscle. Biochemical data, including levels of fasting plasma glucose, insulin, lipid profiles, and high-sensitivity C-reactive protein (hsCRP), were measured. Insulin resistance index (IR) was calculated using the homeostasis model assessment method. Performance tests included a cardiopulmonary exercise test and knee extension strength and endurance measurements. RESULTS Patients with severe OSA had significantly (P<0.05) lower values of IMCL (14.1±5.4 AU) and EMCL (10.3±5.8 AU) compared to the control group (25.2±17.6 AU and 14.3±11.1 AU, respectively). Patients with severe OSA had significantly higher hsCRP, IR, and dyslipidemia compared with controls (all P<0.05). Furthermore, IMCL was negatively correlated with AHI, cumulative time with nocturnal pulse oximetric saturation lower than 90% (TSpO2<90%) (ρ=-0.35, P<0.05), IR (ρ=-0.40, P<0.05), glucose (ρ=-0.33, P<0.05), and insulin (ρ=-0.36, P<0.05), and positively correlated with lowest oximetric saturation (ρ=0.33, P<0.01). CONCLUSION Skeletal muscle dysfunction and metabolic abnormalities were observed in patients with OSA that did not have obesity. IMCL was positively correlated with aerobic capacity and muscular performance, but negatively correlated with AHI and IR. Large-scale clinical trials are required to explore the complicated mechanism among OSA, intramuscular metabolism, and insulin action. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00813852.

Lifestyle medicine

Fundamental Clinical Imbalances : Hormonal ; Structural
Patient Centred Factors : Mediators/Obstructive Sleep Apnea
Environmental Inputs : Nutrients
Personal Lifestyle Factors : Sleep and relaxation
Functional Laboratory Testing : Blood ; Imaging
Bioactive Substances : C-reactive protein

Methodological quality

Jadad score : Not applicable
Allocation concealment : Not applicable
Publication Type : Case Reports

Metadata